pH, Lactate, and Hypoxia: Reciprocity in Regulating High-Affinity Monocarboxylate Transporter Expression in Glioblastoma1

نویسندگان

  • James P. Caruso
  • Brandon J. Koch
  • Philip D. Benson
  • Elsa Varughese
  • Michael D. Monterey
  • Amy E. Lee
  • Ajal M. Dave
  • Sam Kiousis
  • Andrew E. Sloan
  • Saroj P. Mathupala
چکیده

Highly malignant brain tumors harbor the aberrant propensity for aerobic glycolysis, the excessive conversion of glucose to lactic acid even in the presence of ample tissue oxygen. Lactic acid is rapidly effluxed to the tumor microenvironment via a group of plasma-membrane transporters denoted monocarboxylate transporters (MCTs) to prevent "self-poisoning." One isoform, MCT2, has the highest affinity for lactate and thus should have the ability to respond to microenvironment conditions such as hypoxia, lactate, and pH to help maintain high glycolytic flux in the tumor. Yet, MCT2 is considered to not respond to hypoxia, which is counterintuitive. Its response to tumor lactate has not been reported. In this report, we experimentally identify the transcription initiation site/s for MCT2 in astrocytes (normal) and glioma (tumor). We then use a BACmid library to isolate a 4.2-kbp MCT2 promoter-exon I region and examine promoter response to glycolysis-mediated stimuli in glioma cells. Reporter analysis of nested-promoter constructs indicated response of MCT2 to hypoxia, pH, lactate, and glucose, the major physiological "players" that facilitate a tumor's growth and proliferation. Immunoblot analysis of native MCT2 expression under altered pH and hypoxia reflected the reporter data. The pH-mediated gene-regulation studies we describe are the first to record H+-based reporter studies for any mammalian system and demonstrate the exquisite response of the MCT2 gene to minute changes in tumor pH. Identical promoter usage also provides the first evidence of astrocytes harnessing the same gene regulatory regions to facilitate astrocyte-neuron lactate shuttling, a metabolic feature of normal brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes.

Observations on lactate transport in brain cells and cardiac myocytes indicate the presence of a high-affinity monocarboxylate transporter. The rat monocarboxylate transporter isoform MCT2 was analysed by expression in Xenopus laevis oocytes and the results were compared with the known characteristics of lactate transport in heart and brain. Monocarboxylate transport via MCT2 was driven by the ...

متن کامل

The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells.

Transport of lactate and other monocarboxylates in mammalian cells is mediated by a family of transporters, designated monocarboxylate transporters (MCTs). The MCT4 member of this family has recently been identified as the major isoform of white muscle cells, mediating lactate efflux out of glycolytically active myocytes [Wilson, Jackson, Heddle, Price, Pilegaard, Juel, Bonen, Montgomery, Hutte...

متن کامل

Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH.

Several laboratories have investigated monocarboxylate transport in a variety of cell types. The characterization of the cloned transporter isoforms in a suitable expression system is nevertheless still lacking. H+/monocarboxylate co-transport was therefore investigated in monocarboxylate transporter 1 (MCT1)-expressing Xenopus laevis oocytes by using pH-sensitive microelectrodes and [14C]lacta...

متن کامل

An endogenous monocarboxylate transport in Xenopus laevis oocytes.

We investigated the existence of an endogenous system for lactate transport in Xenopus laevis oocytes. (36)Cl-uptake studies excluded the involvement of a DIDS-sensitive anion antiporter as a possible pathway for lactate movement. L-[(14)C]lactate uptake was unaffected by superimposed pH gradients, stimulated by the presence of Na(+) in the incubating solution, and severely reduced by the monoc...

متن کامل

Kinetics, molecular basis, and differentiation of L-lactate transport in spermatogenic cells.

Round spermatid energy metabolism is closely dependent on the presence of L-lactate in the external medium. This L-lactate has been proposed to be supplied by Sertoli cells in the seminiferous tubules. L-Lactate, in conjunction with glucose, modulates intracellular Ca(2+) concentration in round spermatids and pachytene spermatocytes. In spite of this central role of L-lactate in spermatogenic c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017